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Introduction. This paper models a system of equations describing planar unsteady motion of a perfect incompressible 
fluid in a channel. For a specific class of flows, e.g., those with a symmetric velocity profile, the equations are reduced to a 
one-dimensional unsteady system. It should be noted that, depending on the solution, the nonlinear system of equations 
obtained can be both elliptic and hyperbolic. The question arises as to the correctness of the Cauchy problem for the 
equations considered [ i ]. 

It is shown that the flow corresponding to the elliptic case is unstable towards small perturbations. Stability is taken 
to mean stability of the linearized system in established flow with straight streamlines. The development of a Kelvin- 
Helmholtz instability leads to mixing of the fluid layers and transition to a stable velocity profile. 

On the basis of this mixing mechanism the author suggests a model for the potential motion of two fluid layers 
separated by a vortex region. The choice of velocity profile over the channel cross section is based on minimizing the 
energy loss in transition to stable flow, and is accomplished by using the conservation laws for mass and momentum. Flow 
of fluid over a step is examined as an example of the possible uniquejearrangement of the velocity profile. Allowance for 
shear instability prevents elliptic regions appearing in the solutions considered, and makes it necessary to study the Cauchy 
problem for hyperbolic systems of equations with constraints. 

1. We consider plane-parallel flow of an ideal incompressible fluid in a channel bounded above and below by 
horizontal impermeable walls. The fluid fills the entire channel, and therefore the motion is determined by the initial 
velocity distribution. The flow is described by the system of Euler equations 

Ut -~- UUx -}- WU~ -~- p*~ = O, - -  oo < X < OO, 

w t + u w x + w w v + p ~ = O ,  - - H < y < H ,  (1.1) 

ux § wy = O, t > O, 

where u and w are the coordinates of the velocity vector; p* = p + gy is the "modified" pressure, and g is the acceleration 
due to gravity. At the boundaries we have the impermeability conditions 

wl~ ,= -rx  = wl~ ,= ,  = O. (1.2) 

The "shallow water" approximation has been widely used to describe "smooth" flows in which the parameters of the 
motion change appreciably only at distances considerably greater than the channel width. This approximation consists in 
eliminating from the Euler equations the terms describing the vertical acceleration, which leads to a hydrostatic pressure 
distribution. The equations can be obtained formally with the aid of the following expansion of the dependent and the 
independent variables in the system (1.1) [2]: 

X --*- X, y --~ By, t --~ 8-112t~ tt --)- 8tt, V --)" 831~0, p --)" ep .  

Retaining terms of first order in e in Eq. (1.1), we have 

ut  + uu~ + w u  v q- p~r = 0, (1.3) 
ux § w~ = O, p~ = O. 

Without loss of generality we may assume that H = 1. The impermeability conditions, Eq. (1.2), remain unchanged: 
w[y=-i = wly=l = 0 It follows from Eq. (1.3) that the pressure is independent of y, i.e., p* = p*(t, x), and the function 
6o = u r satisfies the equation 

cot q- u~% § wc0y = 0. (1.4) 
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Thus, the quantity co is conserved along trajectories of  the solution of  Eq. (1.3), analogously to the nonzero component of  
vorticity in solutions of  the system (1.1). We shall use this property to simplify the system (1.3). 

We consider a continuous solution of  Eq. (1.3) with lines o f  weak discontinuity y = h +_ ~, where ~7 >i 0, and h and 
are smooth functions of  t and x. Let co(t, x, y) = 0 outside the layer h - 77 ~< y ~< h + ~. This corresponds to the flow 

being potential in the vicinity of  the walls y = +1. We note that u = u(t, x) in the potential flow region. For the mean 
velocity and the intensity of  the vortex layer we introduce the following notation: v = ~/~.(u[y=h-~q" ulwh+,@, ~ = V2(ul~=h+~ 
--  uIy=h-n) �9 Because of  Eq. (1.3) the quantities v, % h, ,7 satisfy the equation 

~'t + (~,v).~ = O, ( 1 . 5 )  

~o+[(i --  h --  q)t + ((l - -  h - -  ~l)(V + ~))A = O, 
co-[(1 + h - q)t + ((i + h - ~l)(v - v))~] = o, 

where co+ are the discontinuities in the function co o n  the lines y = h + ~7. The first equation is the difference in the momenta 
for the functions u ~-utu=+l �9 The other two equations come from integrating the continuity equation at the weak discon- 
tinuity and at the walls. To close the system (1.5) we introduce the mean vorticity 65 = V/r/. Using the condition that the 
mass flow over the channel section is constant, 

we obtain the equation 

1 

~ (t, ~, y) dy = q (t), 
- -1  

( 1 - - ~ t 
o~ § vo~ -3 -7i- flu - - - ~  udy = O. 

h--~ Jo; 

If  the instantaneous velocity profile satisfies the condition 

'S v = ~ udy, 
h--~ 

(1.6) 

we add to the system (1.5) the equation 

o ,  -t- vox = 0. (1.7) 

In particular, if co = const for [y - -  hi < ~ , then Eq. (1.6) is satisfied and w = co. We note that, because of  Eq. (1.4), it 
is sufficient to require that co = const for t = 0, and this property will hold for all t > 0. 

We consider the system (1.5) and (1.7) with co(t, x) = ~o(t, x). Then q(t) = 2(v - 7h), and the system takes the 
form 

m + (V,~q + (o~h)~: = O, 

ht + (X/~hfl + o)~1(~1 -if- h ~ - -  1))x = O, o t + vo x ----- O. (1.8) 

dx/dt = Li(t, x), t = O, i ,  2 

The lines 

are characteristics of  the system, where ~0 = v, ~x.~ = v -4- 7h 4- ~3/2~1 + h 2 - -  t .  The condition for the system (1.8) to 
be hyperbolic is expressed by the inequality 

'l  > ~ 1 / ~ ( 1  - -  h~) .  ( 1 . 9 )  

A reasonable problem for Eq. (1.8) is the Cauchy problem, and thus one should investigate the correctness of  the 
Cauchy problem for a nonlinear system of equations which varies its type, depending on the solution. 

A way out of  this difficult position is noted below. It will be shown that the inequality (1.9) describes stability of  
a flow with an appropriate velocity: profile towards small perturbations. The development of  a shear flow instability when 
condition (1.9) breaks down is modelled by transition to a stable profile, using the laws of  conservation of  mass and total 
momentum and the Bernouilli constants. With this approach the solution always remains in the hyperbolic region. Naturally, 
the question of  solubility of  the Cauchy problem for the system of  equations (1.8) with bounds of  this type also requires a 
thorough investigation. 

Note 1. The system (1.8) in the hyperbolic region is reminiscent of  the equations o f  gas dynamics. Vorticity plays 
the role of  entropy. If  the vorticity is constant at the initial time, the system converges to two solutions, but only until 
shock waves are formed or the constraint (1.9) is applied. 
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2. To determine the solution in the hyperbolic region one must use the conservation laws which define the laws o f  
discontinuity in the solution. If  we consider solution discontinuities only of  small amplitude, then we can determine the 
general solution from the following divergent form of  the system (1.5), (1.7): 

(t 4- h - -  q ) t+  ((t -5 h - -  ~l)(v --  "~)).~ = 0, (2.1) 

(~ - h - .  n ) ,  + ( ( l  - -  h - -  n ) ( v  + V) )x  = 0 ,  

~lt + (nv),- = O, ?t 4- (,?v)~ = O. 

Let v be the speed of  propagation of  a line of  discontinuity x = x(t) in the solution of  the 'system (2.1). On the discontinuity 
line we have the Hugoniot conditions 

: v [h  - -  n] = [(I + h - -  ~l)(V-- 7)], v [h  q- nl = ([h +~q - -  t)(v -t- ?)l, x'[?] = [~,v], v[~ll = [~lV]. (2.2) 

The discontinuity lines in the solution of  the system (2.1) correspond to a mathematical description of  internal hydraulic 
jumps, i.e, the flow region with a sharp variation in parameters, for which the shallow water approximation examined in 
Section 1 is not suitable. 

We now convert to a coordinate system moving with velocity v = dx/dt = const, that of the discontinuity line. Let 
the flow on both sides of  the discontinuity have piecewise linear velocity proNes (u o (y), 0), (u(y), 0). The quantities 
h, r/, v, % characteristics of  the profiles u(y), Uo(Y), arerelated by Eq. (2.2) (v = 0 in this coordinate system). These rela- 
tions state that the Bernoulli constants are conserved in regions of  vortex-free motion, and that the total mass flux and the 
energy are conserved across a discontinuity line. In addition, it follows from Eq. (2.2) that the vorticity [co] = 0 and the 
fluid mass are constant in each of  the layers - - t  ~ y ~ h - -  ~1, h - -  ~1 ~ Y ~ h § 11, h + q ~ y  ~ 1, i.e., there is no 
mixing of  layers in passing through a hydraulic jump. However, total momentum is not conserved, and therefore Eq. (2.2) 
can be regarded as a convenient approximation describing a discontinuity of  moderate intensity. The analogous approach in 
gasdynamics is replacing the energy conservation law by the condition that entropy is constant in passing through a dis- 
continuity line. 

3. We turn now to the question of  stability of  a flow with parallel streamlines and its connection with condition 
(1.9). The functions u = u(y), w = 0, p* = const are particular solutions of  the problem of Eqs. (1.1), (1.2). However, an 
established flow with velocity profile u = u(y), w = 0 may be unstable towards small unsteady perturbations. The develop- 
ment of  a shear instability, called a Kelvin-Helmholtz instability, leads to strong mixing of  the fluid layers. The result is a 
new stable velocity p rone .  Here there is no explicit account, for the influence of  viscosity, which causes energy loss in 
the fluid in forming vortices. 

We consider possible methods of  passing from an unstable velocity profile to a stable one, while conserving integral 
flow characteristics such as mass flux and momentum. An unstable velocity p r o n e  may arise, for example, because of  the 
boundary conditions. For instance, when two uniform streams with different velocities flow together, the velocity profile 
is strongly unstable. This leads to a breakdown in the contact surface and the formation of  some monotonic velocity 
p r o n e  at quite a large distance from the beginning of  intermixing. 

We limit the examination to class A stable profiles u(y) with the following properties: 

a) the function u(y) is twice continuously differentiable in the intercept [ - 1 ,  1 ]; 

b) the function u(y) increases (or decreases) monotonically; 

c) there exists a unique point of  inflection y 

~ (-- l, t), u' (~/] = max u ' ( y ) ( u ' @ )  = rain u'(y));  
' " Lt~(--I ,1)  " t E(- -1 ,1)  

d) the inequality 
1 1 

A ~  1 "@ Jl u"(zl) dy 
i , '  (y)  ( .  (y)  - ~ ( ; j ) )  - ~  _ (~,' ( u ) ) % ,  (u) - z, (Tj)) > o 

(3.1) 

holds. Condition "d"  is the necessary and sufficient condition for stability of  the p r o n e  u(y) with properties " a " - " c "  
towards unsteady harmonic perturbations of  arbitrary wavelength [3]. 

We shall consider that in some coordinate system moving at constant velocity along the channel, the process of  
transition from an unstable p r o n e  to a stable one has been accomplished. We shall neglect the influence of  the boundary 
layer near the rigid walls. Therefore for y = +1 it follows from the Bernouilli integral that the quantity 1/2 u 2 + p* = 
const. Let u o (y) be an unstable p rone ,  undergoing transition to u(y) ~ A. Then the relations 
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1 1 1 1 

--I --I --I --I 

I u * ( l ) + p *  t u g ( l ) + p o ,  t p * =  i - y  = - g  - 5 - u ~  -gUo(-l)+po 

(3.2) 

are valid. We now can try to solve the problem of finding the function u(y) of  class A so as to minimize the energy jump 
[E] = E 0 - E, where 

1 

--1 

subject to conditions (3.2) and limits (3.1). This is a problem of  classical calculus of  variations. I t  is not difficult to show 
that an extremum of  the functional is not  reached in class A .  We then go to a wider class A which includes the limits of  
functions from A.  By convergence we understand uniform convergence in the interval_[-1,  1] and convergence to C 2 in 
some interval containing the point  of inflection of  the sequence considered. In class A functions suspected of  an extremum 
will be continuous piecewise linear functions, consisting of  two parts u - const (extremals in A)  and a straight line section 
joining them (one-si_ded extremum). We denote this class by A o. We shall not  try to show that  a minimum of the func- 
tional [E] in class A is reached in elements o f A  0. The rationale for introducing class A is, first, that it contains functions 
most frequently used for approximating the velocity distributions in the mixing layer, e.g., the hyperbolic tangent, and, 
secondly, the necessary and sufficient condition (3.1) for flow stability is known for a velocity profile from this class. 
Therefore, we shall regard the foregoing discussion as being directed at a choice of  class A o, and shall  now discuss the 
possibility of  using condit ion (3.2) to determine the p r o n e  u(y) of  class A o . 

Lemma 1. For  a function u(y) of class A 0, the inequality 

(b - -  a) ~ - -  4(t + a)(l - -  b) >~ 0 (3.3) 

is satisfied, where the points y = a, y = b are inflection points of  the piecewise linear function u(g) ( - - t  ~ a ~ b ~ t).: 

Proof. The function U(y) is a limit of  stable profiles u ( y )  of class A in the following sense: 

A) sup lu(g)--u,~(g)l--~O, n~-~-~; 
V ~ ( - - I , i )  

B) there exists y ~ ( - -1 , I ) ,  g = lim g~, where u"(gn) = 0; 

C) there exists a quanti ty 8 > 0 such that u n (y) ~ u(y) for n ~ ~ in the space C~i_6,?+~ ]. 

It follows from properties A-C that  ~ ~ (a, b) for u(a) ~ u(b). We note that expression A ( u  ) can be written in 
the form 

g n  + 6  gn +6 ,, ~n- -6  1 

a (~)  ~',~ ( ~ -  ~,~) :~_~ ~._~ (,,;)~" (~,~-~,,3 ( ~ - ~ ) ~  _ ( ~ - L )  ~ > o, 
�9 - -1  V 5 

where u~ = u n(g-~). Going to the limit in the expression A(un), we obtain the inequality 

a (~) 4" ( 4 -  :,) - ( ~ -  u) ~ , (~,_ ;,)~ 

We note that 

0, - - t ~ g ~ a ,  
u ' ( z ) =  to, a ~ g ~ b ,  

O, b ~ g ~ t .  

Therefore, we can write the expression for A(u) in the form 

t [ 1 t l~-a ~ ( u ) = 7  ; 2 ; j  ~ - ~  (,~-~)~ (_1 - -  b ~-~]. 
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Since A(u) t> 0, we come to the inequality 

- ,2~  '2 q- (2a - -  a"- -i- 2b  4:. b"-)y -~- 2a~'b - -  a'- - -  2 a b  2 - -  b ~" >~ O, 

i.e., d ~ = (a  - b)2((a - -  b) ~ - -  4(a 4- 1)(1 - -  b)) ~ 0,  which was to be proved. 

Lemma 2. Flow with a profile from A o is stable. 

Proof. We can directly investigate the stability of  a flow with a velocity profile (u(y), 0) for u(y) ~ A0. Because 
of  the piecewise lineafity of  the function u(y) the Rayleigh equations take a simple form [4]. We seek a solution in the 
form of  a combination of  exponents. Here the coefficients are determined by the conditions for continuity of the solution 
and by the impermeabil i ty conditions at y = +1. Bounded growth of  perturbations with time for arbitrary wavelength 
occurs only when inequality (3.3) is fulfilled. This condition was derived in [4] in the special case for a = - b .  

We now turn to determination of  a u profile from A o for a given p roNe  % .  For  convenience we consider that  the 
u o profile is constructed in the same way as the u profile, as long as it satisfies the stability condit ion (3.3). Let h = l!~(a 

§ b) ,  �9 ~1 = V~(b  - -  a), v = V~(u,(--l) + u(t)), 7 = V~(u(I) -- u(-- l ) ) .  

Note 2. The stability condit ion (3.3) coincides with the hyperbolic condition (1.9) of  system (1.8), derived from 
the assumption that the instantaneous velocity p r o n e  is piecewise linear. 

For  the functions u and u o of  class A o relations (3.2) have the form 

v - -  7 h = Vo - -  70ho, 71' = 7oVo, (3.4) 

( 4 ) ~! 470h0v0+ ~(t ~ " v 2 - 4 7 h v q - ~ ' ~  l - - - g - r  I = v o , - -  70 - - - g - q o l .  
/ 

To close the system (3.4) we add the stability condition (3.3) for the u(y) profile 

(3.5) 

We note than an equality sign has been used in condit ion (3.5), since, when a stable state is reached, there is no further 
mixing and Eqs. (2.2) come into force. We now proceed to analyze the relations obtained. 

Lemma 3. For  a stable profile u0(Y) Eqs. (3.4) and (3.5) have solutions with v(vo - -  v) ~ O. 

Proof. Let 7or0 4= 0 . Then v ~ 0 and the equation in v has the form 

P (v) = - -  7v < + 8v 8 (Vo - -  7oho) - -  v ~ (V~o - -  87ohov'o + 7~ (3 - -  4rio - -  2h~)) + 7~V~o = O. (3.6) 

roY0 > 0, P (Vo) = 2 (2q0 i § h~) , Since the polynomial  P(v) has differeiat signs at the p o i n t  v = 0 and v = v o : P(0) = ~" ~ 
2 2 7or0 < 0,  then we have proved that there is a root  v* of  the polynomial  P(v). The o ther  relations can be solved uniquely. 

F o r  the case "Yo Vo = 0 a solution can be found in explicit form. Thus the lemma has been proved. 

Note 3. It follows from Eq. (3.6) that  there is at least one more root v . ,  where v ' v .  ~< 0. From the assumption 
that in the vicinity of  the walls the streamlines are directly uniquely along the x axis, it  follows that the inequality 

(v • 7)(Vo + v0) ~> 0 (3.7) 

holds. From Eqs. (3.4) and (3.7) we obtain the conditions vvo ~ O, 77o ~ O ,  which eliminate the root  v .  of  Eq. (3.6). 
However, two real roots of  the equation P(v) = 0 may appear. In addition, the system (3.4), (3.5) is nonlinear and its 
solution satisfies certain constraints, e.g., - 1  ~< h ~< 1, and we must still check that these are satisfied. 

4. We now investigate a solution of  the system (3.4), (3.5) in detail in the example of  flow of  fluid over a step 
(see Fig. 1). We consider established flow of  the fluid in the region x > 0, --1 < y < t .  Uniform flow is given at the .  
section x = 0, b' ~ (h0, 1). The impermeabili ty condition holds at the channel walls. The problem is to determine the 
velocity profile u ( y )  ~ A0 at sufficiently large values of  x > 0, using Eqs. (3.4), (3.5). The initial velocity profile u o (y) at 
x = 0 is piecewise constant (r/o = 0) 

0, --l<y<ho, 
u~ Uo, h o < y < l .  

Therefore, vo = 7o = 1/2uo > 0 .  The system (3.4), (3.5) takes the form 

v --??h = v o (t - -  ho), 7v = v~, (4.1) 

( ' )  v 2 - -  4v, v h  -}- 7 2 1 - -  --~ ~1 = 2v~ (1 - -  2ho), 2r I = 1 - -  h ~-. 
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L , ~ / g / t g •  H / H . ,  / / / / / / ~ . ~ / / / z .  

Id 0 

Fig. 1 

Lemma 4. There exists a unique solution of  system (4.1), satisfying condition (3.7). 

Proof. Let v = ocv 0. We note that only positive values of  a satisfy condition (3.7). In fact, v q- 7 = v0(a + a_l) > 0 
only for c~ > 0. We shall show that the desired value e * ~ [0, t]  . In this case the constraint Ihl = I~*(~* - t -+- ho)l < l 
is satisfied. From Eq. (4.1) we obtain an equation in a, accounting for r/ by the parameter (~1 =1/2(t - -  h 2) , i.e., 0 <~ r7 ~< 
1/2): 

4 
Q (~) = - 3cz' -}- ~ (t - ho) (z 3 --  2 (1 - -  2ho) r 2 -q,- t - -  --g- ~'1 = O. (4.2) 

Since Q(0) = t - ~l,rl > 0, Q(I) = -4/3~ I ~ 0 ,  then evidently the root c~* of  the polynomial Q(c0 exists in the interval 
[0, 11. This value of  c~* gives the solution of  system (4.1). 

We shall now prove the uniqueness of  the positive root in Eq. (4.2). The extrema of  the function Q(o0 are located 
at the points c~ o = 0 and 

-4=_ 3(1--ho) ~ r  (3h2o q- 2ho -- t) (4.3) 
~ 6 

Therefore, for - 1  <~ h o ~< 1/3 the discriminant in Eq. (4.3) is negative and for c~ > 0 the function Q(a) is monotonic. For 
h0 ~ [1/2, t1 at the point ~ = 0 there is a local minimum, and a maximum is reached in the interval [0, 1]. Therefore, the 
root of  Eq. (4.2) for a > 0 is unique. It remains to consider the case ho ~ (1/3, 1/;). Here 0 < ~ -  < o~+ < t . A minimum 
is reached at the point c(, and at the point a+ the function Q(a) has a maximum. Since OQ/Oh,=-4~x~(t - -  o:) ~ 0 for 

~ (0 , t ) ,  the function Q(a'(ho)) increases monotonically for h0 ~ (1/3, 1/2) and reaches a minimum at the point h o = 1/3. 
fo~ 1 ' '  4 H e r e Q ~ - ( - 5 - ) ) = O ( + ) h ~ f ~ l / 3 = t - - - g - o q - - 3 - ' ~ O  for0~<r?~< 1/2. The lemma has been proved. 

We note that the problem examined in Section 4 arises in the study of flow of an ideal fluid over a network of pro- 
files of  finite thickness. 

The proposed model is an attempt to describe mathematically the development of  a shear instability in the motion 
of  an ideal fluid in the long-wave approximation. The stability condition (1.9) leads to the system of  equations obtained 
being hyperbolic and gives reason to hope that the Cauchy problem for this system is correctly posed. 
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